注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

上善若水的博客

 
 
 

日志

 
 

解决问题的策略——替换  

2011-01-03 17:08:52|  分类: 教学资源 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

解决问题的策略——替换  教学设计与反思

                                          肥城市实验小学   陈宏

一、教学目标

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。

2、在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:

使学生掌握用“替换”的策略解决一些简单问题的方法。

教学用具:

多媒体课件

二、教学过程

(一)重温故事,感受替换策略

故事:电脑出示曹冲称象画面。

提问:曹冲是怎样称出大象重量的?

小结:曹冲用石头代替大象,称出了大象的重量。

曹冲称象的方法是替换策略的具体应用,将曹冲称象的故事引入课堂,  既能为学生的探究指明方向,有助于学生提取替换策略,又能让学生初步感受用策略解决实际问题的好处,自觉地参与到学习中去。

 (二)自主探索,内化替换策略

1.出示问题,补充条件。

电脑出示情境:曹操得胜归来,要把珍藏的720毫升美酒分给几个儿子。将这些酒倒入6个小杯和1个大杯,正好都倒满。小杯和大杯的容量各是多少毫升?

(1)学生说自己的想法。  (多数学生会发现缺少条件。)

(2)教师引导学生先独立思考应该补充什么条件,再在小组内交流。

(3)小组代表汇报补充的条件,教师根据学生汇报的内容进行整理、分类,重点整理、呈现以下内容:①大杯的容量是小杯的(  )倍。②小杯的容量是大杯的。③大杯的容量比小杯多(  )毫升。④小杯的容量比大杯少(  )毫升。

例题直接给出了“小杯的容量是大杯的”,而此处呈现的情境改编了例题,让学生发现情境中缺少条件并补充条件。这样,学生的关注点将自然地聚焦到大杯和小杯的容量之间的关系上。这样的情境能为学生学习替换策略提供空间和机会,使替换的策略呼之欲出,又非常自然。

 (三)体验策略,解决问题

1.倍数关系。

(1)补充条件:小杯的容量是大杯的。讨论:这个条件给我们提供了哪些信息?根据现有的条件,能解决问题吗?

(2)小组合作解决问题,并把解决问题的思路整理出来,在纸上画一画替换的过程,并算一算大杯、小杯的容积各是多少。

(3)教师请部分学生汇报解决问题的过程,并说说自己是怎样替换的、替换的依据是什么(教师随机用电脑演示替换的过程)。

(4)如果在前面的探究过程中,学生只想到了将大杯换成小杯、将小杯换咸大杯两种方法中的一种,教师应引导学生思考“有没有其他替换方法?”

研究数学问题的方式要能顺应学生的思维特点,激发学生主动探索的欲望,给学生自由思考、表达的空间。这样,学生的兴趣才会浓厚起来,思维才会活起来。本环节旨在唤醒学生生活中“换”的经验,让学生借助画一画、算一算,体验用替换策略解决问题的过程,体会运用替换策略的必要性?和合理性,感受策略的价值,增强策略意识。

(5)强调检验。教师指出,把6今小杯替换成2个大杯,或者把1个大杯替换咸3个小杯,这样做到底对不对,还须要检验。强调检验时要看结果是否符合题中的两个已知条件。

本课教学任务较重,检验虽然不是教学重点,但教材把检验安排在写答句的前面,有两层意思:一是先经过检验确认结果再写答句是解决问题的程序,也是学生应养成的良好习惯。二是一种新的方法是否可行、是否可信要检验,这是严谨的态度与科学的精神,是教学中应该倡导和培养的。考虑到本环节要检验的有两个等量关系,在此多花一点时间和学生共同完成检验是非常必要的。

(6)对比归纳。教师引导学生讨论把大杯换成小杯和把小杯换成大杯之间有什么共同的地方,并引导学生得出:它们都是先通过替换把两种量变成一种量再解决问题;在替换过程中,要抓住等量关系进行替换;替换是解决问题的一种有效策略。

接受新知,需要一个反复的过程。本环节反复强化替换策略,让学生通过交流、画图、演示,对比、归纳等数学活动,体验替换策略的妙处,经历用替换策略解决问题的过程,旨在让学生的思维能力得到进一步的发展。

2.相差关系。

 (1)补充条件:每个大杯比小杯多装160毫升。讨论:补充这个条件后,和刚才的问题相比,有什么不同?还能用替换策略解决吗?如果把1个大杯替换成1个小杯,倒酒的时候会出现什么情况?

(2)学生交流,教师相机借助多媒体动画演示换杯的过程。

(3)提问:将1个大杯换咸1个小杯,少装多少毫升酒?7个小杯,一共装了多少毫升酒呢?每个小杯可以装多少毫升酒?每个大杯呢?怎样列式?

(4)思考:还有其他替换方法吗?如果把6个小杯替换咸6个大杯,又会出现什么情况?每个大杯比小杯多装多少毫升酒?7个大杯一共能装多少毫升酒?每个大杯、小杯分别能装多少毫升酒?怎样列式?

组织教学时,教师应正确把握和使用教材,让学生对什么情况下用什么方法替换更合适进行体验,然后借助电脑动画演示替换过程,帮助学生理清思路。

(5)思考:怎样检验替换后得出的结果是否正确?

(6)小结:无论是将大杯替换成小杯,还是将小杯替换成大杯,都是通过替换把两种量变成一种量;在替换时,要考虑总容量是变多了还是变少了,多了多少或少了多少。     

在两个相差关系的量之间进行替换时,学生比较难理解为什么替换以后总量变化了、总量是怎样变化的。教师通过电脑课件演示替换的过程,能引起学生关注替换后总容量的变化,进而找到解决问题的关键。教学时,还可让学生用实物杯子摆一摆、在纸上画一画具体的替换过程,然后说说为什么可以这样替换。

(四)学以致用,应用替换策略

㈠填一填

小丽买了6支铅笔和一支钢笔,一共花了12元,钢笔的单价是铅笔的6倍。

1、小丽花的总钱数相当于(        )支铅笔的钱,每支铅笔(      )元。

2、小丽花的总钱数相当于(     )支钢笔的钱,每支钢笔(      )元。

㈡选一选

某小学有3块面积相等的花圃和3块面积相等的苗圃,一共是 480平方米。每块花圃比每块苗圃大10平方米,每块花圃多少平方米?

A、(480-3×10)÷6

B、(480+3×10)÷6

㈢勇攀高峰

“鸡兔同笼”问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

你能算出这道题中的鸡和兔各有多少只吗?

本环节旨在让学生应用替换策略,进一步体会替换过程中每一步的意义,沟通替换操作与数学表达式之间的联系,建立用替换策略解决某些问题的模型。只有真正经历策略形成的完整过程,并对策略进行深刻的认识与领悟,才有可能更好地借助方法与策略的迁移,解决新问题。

(五)总结提升,拓展替换策略

1.组织学生回顾用替换策略解决问题的一般思路,并举出生活中用替换法解决问题的实例。

2.展示教师收集的问题:①啤酒促销,3个空瓶可以换1瓶啤酒。②集齐若干个百事可乐瓶盖可以换明星海报、CD架、水壶、明星T恤衫和游戏卡等。③肯德基20周年庆典,举办从电子杂志中找拼图换取电子优惠券活动。

空瓶回收等实际生活中的例子能有效地沟通数学与生活的联系,拓展替换策略的内涵——数量之间的倍数关系、相差关系可以用替换,具体的物品也可替换,让学生真正感受到替换策略在生活中的广泛应用。

教学反思:

本单元主要教学用替换和假设的策略解决实际问题。本单元共安排了2个例题,分3课时进行教学,本节课是其中的第1课时。教学内容是用替换的策略解决实际问题。所谓的替换的策略是指对条件关系复杂,没有直接的方法可解的问题,就可尝试按问题中的条件去假设、替换,得到一个答案,然后把答案代入问题中去验证。教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材安排的例题就是利用“小杯的容量是大杯的 ”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。本节课教学内容(属于“鸡兔同笼”的奥赛题型)学生学起来的确有一定的困难。本节课的教学重点难点是让学生掌握用替换的策略解决一些简单问题的方法;弄清在有差数关系的问题中替换后总量发生的变化。

1、创设情境   感知策略

在课前我通过电脑出示《曹冲称象》的图片并让学生说说曹冲是用什么办法称出大象?然后指出:曹冲用相同重量的石头代替大象的重量,这就是解决问题的一种策略——替换,今天我们就利用这种办法来解决一些实际问题,从而引出新课。生动有趣的动画场景加上耳熟能详的故事,在很大程度上激发学生学习的兴趣及进一步探索新知的欲望。且通过故事让学生初步感知替换策略及其它在实际生活中的应用,再次感受数学与生活的密切联系。

2、巧创例题    优化策略

例题直接给出了“小杯的容量是大杯的”,我在教学时改变了例题,让学生发现情境中缺少条件并补充条件。这样,学生的关注点将自然地聚焦到大杯和小杯的容量之间的关系上。这样的情境能为学生学习替换策略提供空间和机会,使替换的策略呼之欲出,又非常自然。

通过解决问题的策略的教学,使我更加明白了 “数学方法是数学的灵魂。”数学的学习,对学生来说,能使其终身受用的,绝不仅仅是知识,数学思想方法获得是更重要的。

3、在处理完例题以后,我应该增加一个环节,提问:两种替换的方法有什么不同?我们要注意什么?

从而使学生明确:

倍比关系:替换时,可以是“一个物体换几个物体”或“几个物体换一个物体”,总量没有变化。

差比关系:替换时,只能是“一个物体换一个物体”,但总量发生了变化。

 

  评论这张
 
阅读(238)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017